


Fits a function to an sqw object, with an optional background function.
If passed an array of sqw objects, then each object is fitted independently.
Differs from multifit_func, which fits all objects in the array simultaneously
but with independent backgrounds.
Fit several objects in succession to a given function:
>> [wout, fitdata] = fit_func (w, func, pin) % all parameters free
>> [wout, fitdata] = fit_func (w, func, pin, pfree) % selected parameters free to fit
>> [wout, fitdata] = fit_func (w, func, pin, pfree, pbind) % binding of various parameters in fixed ratios
With optional 'background' function added to the function
>> [wout, fitdata] = fit_func (..., bkdfunc, bpin)
>> [wout, fitdata] = fit_func (..., bkdfunc, bpin, bpfree)
>> [wout, fitdata] = fit_func (..., bkdfunc, bpin, bpfree, bpbind)
If unable to fit, then the program will halt and display an error message.
To return if unable to fit, call with additional arguments that return status and error message:
>> [wout, fitdata, ok, mess] = fit_func (...)
Additional keywords controlling which ranges to keep, remove from objects, control fitting algorithm etc.
>> [wout, fitdata] = fit_func (..., keyword, value, ...)
Keywords are:
'keep' range of x values to keep
'remove' range of x values to remove
'mask' logical mask array (true for those points to keep)
'select' if present, calculate output function only at the points retained for fitting
'list' indicates verbosity of output during fitting
'fit' alter convergence critera for the fit etc.
'evaluate' evaluate function at initial parameter values only, with argument check as well
'chisqr' evaluate chi-squared at the initial parameter values (ignored if 'evaluate' not set)
Example:
>> [wout, fitdata] = fit_func (..., 'keep', xkeep, 'list', 0)
Input:
======
win sqw object or array of sqw objects to be fitted
func_handle
Function handle to function to be fitted e.g. @gauss
Must have form:
y = my_function (x1,x2,... ,xn,p)
or, more generally:
y = my_function (x1,x2,... ,xn,p,c1,c2,...)
- x1,x2,.xn Arrays of x coordinates along each of the n dimensions
- p a vector of numeric parameters that can be fitted
- c1,c2,... any further arguments needed by the function e.g.
they could be the filenames of lookup tables for
resolution effects)
e.g. Two dimensional Gaussian:
function y = gauss2d(x1,x2,p)
y = p(1).*exp(-0.5*(((x1 - p(2))/p(4)).^2+((x2 - p(3))/p(5)).^2);
pin Initial function parameter values
- If the function my_function takes just a numeric array of parameters, p, then this
contains the initial values [pin(1), pin(2)...]
- If further parameters are needed by the function, then wrap as a cell array
{[pin(1), pin(2)...], c1, c2, ...}
pfree [Optional] Indicates which are the free parameters in the fit
e.g. [1,0,1,0,0] indicates first and third are free
Default: all are free
pbind [Optional] Cell array that indicates which of the free parameters are bound to other parameters
in a fixed ratio determined by the initial parameter values contained in pin:
pbind={1,3} parameter 1 is bound to parameter 3.
pbind={{1,3},{4,3},{5,6}} parameter 1 bound to 3, 4 bound to 3, and 5 bound to 6
In this case, parmaeters 1,3,4,5,6 must all be free in pfree.
To explicity give the ratio, ignoring that determined from pin:
pbind=(1,3,0,7.4) parameter 1 is bound to parameter 3, ratio 7.4 (the extra '0' is required)
pbind={{1,3,0,7.4},{4,3,0,0.023},{5,6}}
To bind to background parameters (see below), use the function index unity:
pbind={1,3,1} Parameter 1 bound to background parameter 3
pbind={1,3,1,3.14} Give explicit binding ratio.
Optional background function:
--------------------------------
bkdfunc -| Arguments for the background function, defined as for the foreground
bpin | function.
bpfree |
bpbind -|
Examples of a single binding description:
{1,4} Background parameter (bp) 1 is bound to bp 3, with the fixed
ratio determined by the initial values
{5,11,0} Bp 5 bound to parameter 11 of the foreground fitting function, func
{5,11,1} Bp 5 bound to parameter 11 of the background function
{5,11,0,0.013} Explicit ratio for binding bp 5 to parameter 11 of the foreground fitting function
{1,4,1,14.15} Explicit ratio for binding bp 1 to bp 4 of background function
Several binding descriptions:
{{1,3},{2,4,0,1.2},{5,11,1}}
Optional keywords:
------------------
'list' Numeric code to control output to Matlab command window to monitor
status of fit
=0 for no printing to command window
=1 prints iteration summary to command window
=2 additionally prints parameter values at each iteration
'fit' Array of fit control parameters
fcp(1) relative step length for calculation of partial derivatives
fcp(2) maximum number of iterations
fcp(3) Stopping criterion: relative change in chi-squared
i.e. stops if chisqr_new-chisqr_old < fcp(3)*chisqr_old
'keep' Array or cell array of arrays giving ranges of x to retain for fitting.
- single array: applies to all elements of w
- a cell array of arrays must have length the same as w, and describes the
keep ranges for those elements one-by-one.
A range is specified by an arrayv of numbers which define a hypercube.
For example in case of two dimensions:
[xlo, xhi, ylo, yhi]
or in the case of n-dimensions:
[x1_lo, x1_hi, x2_lo, x2_hi,..., xn_lo, xn_hi]
More than one range can be defined in rows,
[Range_1; Range_2; Range_3;...; Range_m]
where each of the ranges are given in the format above.
'remove' Ranges to remove from fitting. Follows the same format as 'keep'.
If a point appears within both xkeep and xremove, then it will
be removed from the fit i.e. xremove takes precendence over xkeep.
'mask' Array, or cell array of arrays, of ones and zeros, with the same number
of elements as the data arrays in the input object(s) in w. Indicates which
of the data points are to be retained for fitting.
'select' Calculates the returned function values, wout, only at the points
that were selected for fitting by 'keep', 'remove', 'mask' and were
not eliminated for having zero error bar etc; this is useful for plotting the output, as
only those points that contributed to the fit will be plotted.
A final useful pair of keyword is:
'evaluate' Evaluate the fitting function at the initial parameter values only. Useful for
checking the validity of starting parameters.
'chisqr' If 'evaulate' is set, then if this option keyword is present the reduced
chi-squared is evaluated. Otherewise, chi-squared is set to zero.
Output:
=======
wout Array or cell array of the objects evaluated at the fitted parameter values
If there was a problem for ith data set i.e. ok(i)==false, then wout(i)==w(i) (or wout{i}
=[] if cell array input).
If there was a fundamental problem e.g. incorrect input argument
syntax, then fitdata=[].
fitdata Result of fit for each dataset
fitdata.p - parameter values
fitdata.sig - estimated errors of foreground parameters (=0 for fixed parameters)
fitdata.bp - background parameter values
fitdata.bsig - estimated errors of background (=0 for fixed parameters)
fitdata.corr - correlation matrix for free parameters
fitdata.chisq - reduced Chi^2 of fit (i.e. divided by
(no. of data points) - (no. free parameters))
fitdata.pnames - parameter names
fitdata.bpnames- background parameter names
If there was a problem for ith data set i.e. ok(i)==false, then fitdata(i)
will be dummy.
If there was a fundamental problem e.g. incorrect input argumnet syntax, then
fitdata=[].
ok True if all ok, false if problem fitting.
If an array of input datasets was given, then ok is an array with the size of the
input data array.
If the error was fundamental e.g. wrong argument syntax, then ok will be a scalar.
mess Character string contaoning error message if ~ok; '' if ok
If an array of datasets was given, then mess is a cell array of strings with the
same size as the input data array.
If the error was fundamental e.g. wrong argument syntax, then
mess will be a simple character string.
EXAMPLES:
Fit a 2D Gaussian, allowing only height and position to vary:
>> ht=100; x0=1; y0=3; sigx=2; sigy=1.5;
>> [wfit, fdata] = fit(w, @gauss2d, [ht,x0,y0,sigx,0,sigy], [1,1,1,0,0,0])
Allow all parameters to vary, but remove two rectangles from the data
>> ht=100; x0=1; y0=3; sigx=2; sigy=1.5;
>> [wfit, fdata] = fit(w, @gauss2d, [ht,x0,y0,sigx,0,sigy], ...
'remove',[0.2,0.5,2,0.7; 1,2,1.4,3])
The same, with a planar background:
>> ht=100; x0=1; y0=3; sigx=2; sigy=1.5;
>> const=0; dfdx=0; dfdy=0;
>> [wfit, fdata] = fit(w, @gauss2d, [ht,x0,y0,sigx,0,sigy], ...
@plane, [const,dfdx,dfdy],...
'remove',[0.2,0.5,2,0.7; 1,2,1.4,3])
% Overloaded methods:
sqw/fit_func
sqw/fit_func
d4d/fit_func
d3d/fit_func
d2d/fit_func
d1d/fit_func
d0d/fit_func