[MINIMUM,FVAL,EXITFLAG,OUTPUT] = FMINSWARMHYBRID(FUN,PARS,[OPTIONS],[CONSTRAINTS]) hybrid Particle Swarm Optimization This minimization method uses a hybrid Particle Swarm Optimization algorithm for finding the minimum of the function 'FUN' in the real space. At each iteration step, a local optimization is performed. Default local optimizer is the Nelder-Mead simplex (fminsearch). You may change it by defining the options.Hybrid function to any minimizer. Calling: fminswarmhybrid(fun, pars) asks to minimize the 'fun' objective function with starting parameters 'pars' (vector) fminswarmhybrid(fun, pars, options) same as above, with customized options (optimset) fminswarmhybrid(fun, pars, options, fixed) is used to fix some of the parameters. The 'fixed' vector is then 0 for free parameters, and 1 otherwise. fminswarmhybrid(fun, pars, options, lb, ub) is used to set the minimal and maximal parameter bounds, as vectors. fminswarmhybrid(fun, pars, options, constraints) where constraints is a structure (see below). fminswarmhybrid(problem) where problem is a structure with fields problem.objective: function to minimize problem.x0: starting parameter values problem.options: optimizer options (see below) problem.constraints: optimization constraints fminswarmhybrid(..., args, ...) sends additional arguments to the objective function criteria = FUN(pars, args, ...) Example: banana = @(x)100*(x(2)-x(1)^2)^2+(1-x(1))^2; [x,fval] = fminswarmhybrid(banana,[-1.2, 1]) Input: FUN is the function to minimize (handle or string): criteria = FUN(PARS) It needs to return a single value or vector. PARS is a vector with initial guess parameters. You must input an initial guess. PARS can also be given as a single-level structure. OPTIONS is a structure with settings for the optimizer, compliant with optimset. Default options may be obtained with o=fminswarmhybrid('defaults'); options.Hybrid specifies the algorithm to use for local hybrid optimizations. It may be set to any optimization method using the @fminsearch syntax. option.PopulationSize sets the number of particles in the swarm (20-40). option.SwarmC1 sets the local attractors strength (1-3) option.SwarmC2 sets the global attractor strength (1-3). option.SwarmW sets inertia weight (0-1). options.MinFunEvals sets the minimum number of function evaluations to reach An empty OPTIONS sets the default configuration. CONSTRAINTS may be specified as a structure constraints.min= vector of minimal values for parameters constraints.max= vector of maximal values for parameters constraints.fixed= vector having 0 where parameters are free, 1 otherwise constraints.step= vector of maximal parameter changes per iteration constraints.eval= expression making use of 'p', 'constraints', and 'options' and returning modified 'p' or function handle p=@constraints.eval(p) An empty CONSTRAINTS sets no constraints. Additional arguments are sent to the objective function. Output: MINIMUM is the solution which generated the smallest encountered value when input into FUN. FVAL is the value of the FUN function evaluated at MINIMUM. EXITFLAG return state of the optimizer OUTPUT additional information returned as a structure. Reference: Kennedy J., Eberhart R.C. (1995): Particle swarm optimization. In: Proc. IEEE Conf. on Neural Networks, IV, Piscataway, NJ, pp. 1942-1948 Shi, Y. and Eberhart, R. C. A modified particle swarm optimizer. Proc. IEEE Int Conf. on Evol Comput pp. 69-73. IEEE Press, Piscataway, NJ, 1998 Contrib: Alexandros Leontitsis leoaleq@yahoo.com Ioannina, Greece 2004 [hPSO] and more informations on http://www.particleswarm.net, http://www.swarmintelligence.org Version: Nov. 27, 2018 See also: fminsearch, optimset (c) E.Farhi, ILL. License: EUPL.