function [signal, this] = sqw_phonons_template_dho(HKL, t, FREQ, POLAR, is_event, resize_me, Amplitude, Gamma, Bkg, T) % sqw_phonon_template_dho: code to build signal from DHO's at each mode FREQ, for all HKL locations % when POLAR is not empty, the phonon intensity (Q.e)^2 form factor is computed % when resize_me is specified [size], the signal is reshaped to it % Reference: B. Fak, B. Dorner / Physica B 234-236 (1997) 1107-1108 % H. Schober, J Neut. Res. 17 (2014) 109 % size of 'w' is [ numel(x) numel(t) ]. the energy for which we evaluate the model this.UserData.maxFreq= max(FREQ); % for each mode nt = numel(t); % store when not too large if numel(HKL) <= 1e5, this.UserData.FREQ = FREQ; this.UserData.HKL = HKL; this.UserData.POLAR = POLAR; else this.UserData.FREQ = []; this.UserData.HKL = []; this.UserData.POLAR = []; end % test for unstable modes wrong_w = numel(find(FREQ(:) < 0 | imag(FREQ(:)) | ~isfinite(FREQ(:)))); if wrong_w, disp([ 'WARNING: found ' num2str(wrong_w) ... ' negative/imaginary phonon frequencies (' ... num2str(wrong_w*100/numel(FREQ)) '% of total) in ' this.Name ]); end clear wrong_w % we compute the Q vector in [Angs-1]. Search for the B=rlu2cartesian matrix UD = this.UserData; B=[]; if isfield(UD, 'reciprocal_cell') B = UD.reciprocal_cell; elseif isfield(UD, 'properties') && isfield(UD.properties, 'reciprocal_cell') B = UD.properties.reciprocal_cell; else B = eye(3); % assume cubic, a=b=c=2*pi, 90 deg, a*=2pi/a=1 end q_cart = B*HKL'; qx=q_cart(1,:); qy=q_cart(2,:); qz=q_cart(3,:); Q=[ qx(:) qy(:) qz(:) ]; % in Angs-1 clear q_cart qx qy qz % check if we have everything needed for the intensity estimate: b_coh, positions b_coh = []; positions = []; masses=1; if isfield(UD, 'positions') positions = UD.positions; elseif isfield(UD, 'properties') && isfield(UD.properties, 'positions') positions = UD.properties.positions; end if isfield(UD, 'masses') masses = UD.positions; elseif isfield(UD, 'masses') && isfield(UD.properties, 'masses') masses = UD.properties.masses; end if isscalar(masses) && size(positions,1) > 1 for index=1:size(positions,1) if index > numel(masses), masses(index) = 1; end if isnan(masses(index)) || masses(index) <= 0, masses(index) = 1; end end end if isfield(UD, 'b_coh') b_coh = UD.b_coh; elseif isfield(UD, 'properties') && isfield(UD.properties, 'b_coh') b_coh = UD.properties.b_coh; end if isempty(b_coh) || any(b_coh == 0 | isnan(b_coh)) if isfield(UD, 'sigma_coh') sigma_coh = UD.sigma_coh; elseif isfield(UD, 'properties') && isfield(UD.properties, 'sigma_coh') sigma_coh = UD.properties.sigma_coh; else sigma_coh = []; end if ~isempty(sigma_coh) b_coh = sqrt(abs(sigma_coh)*100/4/pi); % in [fm] b_coh = b_coh .* sign(sigma_coh); end end if ~isempty(POLAR) if (isempty(b_coh) || any(isnan(b_coh) | b_coh == 0)) && ~isempty(positions) disp([ 'WARNING: Unspecified/invalid coherent neutron scattering length specification for the material ' ... UD.properties.chemical_formula '. Using b_coh=1 [fm] for atoms (sigma_coh=0.126 barns). ' ... 'Specify model.UserData.properties.b_coh as a vector with ' num2str(size(positions,1)) ' value(s) in ' this.Name ]); for index=1:size(positions,1) if index > numel(b_coh), b_coh(index) = 1; end if isnan(b_coh(index)) || b_coh(index) == 0, b_coh(index) = 1; end end end if isscalar(b_coh) && size(positions,1) > 1 disp([ 'WARNING: The material ' UD.properties.chemical_formula ... ' has ' num2str(size(positions,1)) ... ' atoms in the cell, but only one coherent neutron scattering length is defined. ' ... 'Using the same value for all (may be wrong). ' ... 'Specify model.UserData.properties.b_coh as a vector in ' this.Name ]); b_coh = b_coh * ones(1, size(positions,1)); end if ~isempty(b_coh) && ~isempty(positions) && numel(b_coh) ~= size(positions,1) disp([ 'WARNING: Inconsistent coherent neutron scattering length specification: has ' ... num2str(numel(b_coh)) ' but the material ' UD.properties.chemical_formula ' has ' ... num2str(size(positions,1)) ' atoms in the cell. Will not compute phonon intensities. ' ... 'Specify model.UserData.properties.b_coh as a vector in ' this.Name ]); b_coh = []; end end if ~isempty(b_coh) this.UserData.properties.b_coh = b_coh; this.UserData.properties.sigma_coh = 4*pi.*b_coh.*b_coh/100; end if is_event, w = t(:); else w = ones(size(FREQ,1),1) * t(:)'; end signal = zeros(size(w)); % the Bose factor is negative for w<0, positive for w>0 % (n+1) converges to 0 for w -> -Inf, and to 1 for w-> +Inf. It diverges at w=0 if ~isempty(T) && T > 0, n = 1./(exp(w/T)-1); n(w == 0) = 0; % avoid divergence else n=0; end if Gamma<=0, Gamma=1e-4; end % compute Gamma point modes (IR/Raman) index = find(sum(abs(HKL),2) == 0); if ~isempty(index) && (~isfield(UD,'properties') ... || ~isfield(UD.properties,'vibrational_energies') ... || isempty(UD.properties.vibrational_energies)) disp([ strtok(this.Name) ': Gamma point energies (IR/Raman):' ]); this.UserData.properties.vibrational_energies = FREQ(index(1),:)'; f = this.UserData.properties.vibrational_energies(:); disp(' [meV] [THz] [cm-1]') disp(num2str([ f f*.2418 f*8.0657 ],'%10.3f')); end % convert negative frequencies into imaginary index=find(real(FREQ) < 0); if ~isempty(index), FREQ(index) = imag(FREQ(index)) - i*real(FREQ(index)); end for index=1:size(FREQ,2) % loop on modes % % size of 'w0' is [ numel(x) numel(t) ]. the energy of the modes (columns) at given x=q (rows) % we assume Gamma(w) = Gamma w/w0 % W0 is the renormalized phonon frequency W0^2 = w0^2+Gamma^2 Gamma2 = Gamma^2 + imag(FREQ(:,index)).^2; % imaginary frequency goes in the damping W02 = Gamma2 + real(FREQ(:,index)).^2; % shifts unstable mode energies (soft modes) % phonon form factor (intensity) |Q.e|^2 for neutron scattering % POLAR is a set of [xyz] vectors for each atom in the cell POLAR(HKL,mode,atom,xyz) % polarisation vectors already contain the 1/mass factor: ASE/phonons.py:band_structure % ZQ=|F(Q)|^2=|sum_atom[ bcoh(atom). exp(-WQ) .* (Q.*POLAR(HKL,index,atom,:)) .* exp(-i*Q.*pos(atom)) ]|^2 ZQ = 1; try if numel(POLAR) > 1 && ~isempty(positions) ZQ = 0; for atom=1:size(positions,1) % one-phonon structure/form factor in a Bravais lattice if ~isempty(T) && T > 0 nw0 = 1./(exp(FREQ(:,index)/T)-1); nw0(FREQ(:,index) == 0) = 0; else nw0=0; end DW = abs(sum(Q.*squeeze(POLAR(:,index,atom,:)),2)).^2./FREQ(:,index).*(2*nw0+1)/2; % DW function, Schober (9.103) clear nw0 DW = exp(-DW); % Debye-Waller factor % one phonon form factor: H. Schober, (9.203) if ~isempty(b_coh) && all(b_coh) ZQ = ZQ + b_coh(atom) / sqrt(masses(atom)) .* DW .* sum(Q.*squeeze(POLAR(:,index,atom,:)),2) .* exp(-i*Q*positions(atom,:)'); else % when no b_coh, we only show DW*exp(-iQr) ZQ = ZQ + DW .* exp(-i*Q*positions(atom,:)'); end end % atom clear DW ZQ = abs(ZQ).^2; end catch ME disp([ 'Failed intensity estimate (mode polarisation) for mode ' num2str(index) ]); disp(getReport(ME)) ZQ = 1; end if ~is_event if ~isscalar(ZQ), ZQ = ZQ*ones(1,nt); end W02 = W02 *ones(1,nt); Gamma2 = Gamma2*ones(1,nt); end % sum-up all contributions to signal: Fak Dorner 1997 Eq (2) signal = signal+ (n+1).*ZQ*4.*w.*sqrt(Gamma2)/pi ./ ((w.^2-W02).^2 + 4*w.^2.*Gamma2); end % for mode index clear POLAR W02 Gamma2 ZQ n w HKL FREQ % Amplitude if Amplitude signal = signal*Amplitude + Bkg; end signal(~isfinite(signal) | signal < 0 | signal > 1e10) = 0; if ~isempty(resize_me) && prod(resize_me) == numel(signal) signal = reshape(signal, resize_me); % initial 4D cube dimension = [ size(x) numel(t) ] end