

Optimization Toolbox

fminunc
Find minimum of unconstrained multivariable function

Equation
Finds the minimum of a problem specified by

where x is a vector and f(x) is a function that returns a scalar.

Syntax
x = fminunc(fun,x0)
x = fminunc(fun,x0,options)
[x,fval] = fminunc(...)
[x,fval,exitflag] = fminunc(...)
[x,fval,exitflag,output] = fminunc(...)
[x,fval,exitflag,output,grad] = fminunc(...)
[x,fval,exitflag,output,grad,hessian] = fminunc(...)

Description
fminunc attempts to find a minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as unconstrained
nonlinear optimization.

x = fminunc(fun,x0) starts at the point x0 and attempts to find a local
minimum x of the function described in fun. x0 can be a scalar, vector, or
matrix.

x = fminunc(fun,x0,options) minimizes with the optimization options
specified in the structure options. Use optimset to set these options.

[x,fval] = fminunc(...) returns in fval the value of the objective function
fun at the solution x.

[x,fval,exitflag] = fminunc(...) returns a value exitflag that
describes the exit condition.

[x,fval,exitflag,output] = fminunc(...) returns a structure output that
contains information about the optimization.

[x,fval,exitflag,output,grad] = fminunc(...) returns in grad the value
of the gradient of fun at the solution x.

[x,fval,exitflag,output,grad,hessian] = fminunc(...) returns in

[x,fval,exitflag,output,grad,hessian] = fminunc(...) returns in
hessian the value of the Hessian of the objective function fun at the solution x.
See Hessian.

Avoiding Global Variables via Anonymous and Nested Functions explains how
to parameterize the objective function fun, if necessary.

Input Arguments
Function Arguments contains general descriptions of arguments passed into
fminunc. This section provides function-specific details for fun and options:

The function to be minimized. fun is a function that accepts a vector x
and returns a scalar f, the objective function evaluated at x. The
function fun can be specified as a function handle for an M-file
function

x = fminunc(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

x = fminunc(@(x)norm(x)^2,x0);

If the gradient of fun can also be computed and the GradObj option is
'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output argument, the
gradient value g, a vector, at x. Note that by checking the value of
nargout the function can avoid computing g when fun is called with
only one output argument (in the case where the optimization
algorithm only needs the value of f but not g).

function [f,g] = myfun(x)
f = ... % Compute the function value at x
if nargout > 1 % fun called with 2 output arguments
 g = ... % Compute the gradient evaluated at x
end

[x,fval,exitflag,output,grad,hessian] = fminunc(...) returns in
hessian the value of the Hessian of the objective function fun at the solution x.
See Hessian.

Avoiding Global Variables via Anonymous and Nested Functions explains how
to parameterize the objective function fun, if necessary.

Input Arguments
Function Arguments contains general descriptions of arguments passed into
fminunc. This section provides function-specific details for fun and options:

fun The function to be minimized. fun is a function that accepts a vector x
and returns a scalar f, the objective function evaluated at x. The
function fun can be specified as a function handle for an M-file
function

x = fminunc(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

x = fminunc(@(x)norm(x)^2,x0);

If the gradient of fun can also be computed and the GradObj option is
'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output argument, the
gradient value g, a vector, at x. Note that by checking the value of
nargout the function can avoid computing g when fun is called with
only one output argument (in the case where the optimization
algorithm only needs the value of f but not g).

function [f,g] = myfun(x)
f = ... % Compute the function value at x
if nargout > 1 % fun called with 2 output arguments
 g = ... % Compute the gradient evaluated at x
end

The gradient is the partial derivatives of f at the point x. That is,
the ith component of g is the partial derivative of f with respect to the
ith component of x.

If the Hessian matrix can also be computed and the Hessian option is
'on', i.e., options = optimset('Hessian','on'), then the function
fun must return the Hessian value H, a symmetric matrix, at x in a third
output argument. Note that by checking the value of nargout you can
avoid computing H when fun is called with only one or two output
arguments (in the case where the optimization algorithm only needs
the values of f and g but not H).

function [f,g,H] = myfun(x)
f = ... % Compute the objective function value at x
if nargout > 1 % fun called with two output arguments
 g = ... % Gradient of the function evaluated at x
 if nargout > 2
 H = ... % Hessian evaluated at x
 end
end

The Hessian matrix is the second partial derivatives matrix of f at the
point x. That is, the (i,j)th component of H is the second partial
derivative of f with respect to xi and xj, . The Hessian is by
definition a symmetric matrix.
Options provides the function-specific details for the options values.

Output Arguments
Function Arguments contains general descriptions of arguments returned by
fminunc. This section provides function-specific details for exitflag and
output:

 The gradient is the partial derivatives of f at the point x. That is,
the ith component of g is the partial derivative of f with respect to the
ith component of x.

If the Hessian matrix can also be computed and the Hessian option is
'on', i.e., options = optimset('Hessian','on'), then the function
fun must return the Hessian value H, a symmetric matrix, at x in a third
output argument. Note that by checking the value of nargout you can
avoid computing H when fun is called with only one or two output
arguments (in the case where the optimization algorithm only needs
the values of f and g but not H).

function [f,g,H] = myfun(x)
f = ... % Compute the objective function value at x
if nargout > 1 % fun called with two output arguments
 g = ... % Gradient of the function evaluated at x
 if nargout > 2
 H = ... % Hessian evaluated at x
 end
end

The Hessian matrix is the second partial derivatives matrix of f at the
point x. That is, the (i,j)th component of H is the second partial
derivative of f with respect to xi and xj, . The Hessian is by
definition a symmetric matrix.

options Options provides the function-specific details for the options values.

Output Arguments
Function Arguments contains general descriptions of arguments returned by
fminunc. This section provides function-specific details for exitflag and
output:

exitflag Integer identifying the reason the algorithm terminated.
The following lists the values of exitflag and the
corresponding reasons the algorithm terminated.

 1 Magnitude of gradient smaller than
the specified tolerance.

 2 Change in x was smaller than the
specified tolerance.

 3 Change in the objective function value
was less than the specified tolerance.

 0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.FunEvals.

 -1 Algorithm was terminated by the
output function.

 -2 Line search cannot find an acceptable
point along the current search
direction.

grad Gradient at x
hessian Hessian at x
output Structure containing information about the optimization.

The fields of the structure are
 iterations Number of iterations taken
 funcCount Number of function evaluations
 algorithm Algorithm used
 cgiterations Number of PCG iterations (large-scale

algorithm only)
 stepsize Final step size taken (medium-scale

algorithm only)

Hessian
fminunc computes the output argument hessian as follows:

When using the medium-scale algorithm, the function computes a
finite-difference approximation to the Hessian at x using

The gradient grad if you supply it
The objective function fun if you do not supply the gradient

When using the large-scale algorithm, the function uses
options.Hessian, if you supply it, to compute the Hessian at x
A finite-difference approximation to the Hessian at x, if you supply
only the gradient

Options
fminunc uses these optimization options. Some options apply to all

fminunc uses these optimization options. Some options apply to all
algorithms, some are only relevant when you are using the large-scale
algorithm, and others are only relevant when you are using the medium-scale
algorithm.You can use optimset to set or change the values of these fields in
the options structure options. See Optimization Options for detailed
information.

The LargeScale option specifies a preference for which algorithm to use. It is
only a preference, because certain conditions must be met to use the
large-scale algorithm. For fminunc, you must provide the gradient (see the
preceding description of fun) or else use the medium-scale algorithm:

LargeScale Use large-scale algorithm if possible when set to 'on'.
Use medium-scale algorithm when set to 'off'.

Large-Scale and Medium-Scale Algorithms
These options are used by both the large-scale and medium-scale algorithms:

DerivativeCheck Compare user-supplied derivatives (gradient) to
finite-differencing derivatives.

Diagnostics Display diagnostic information about the function to be
minimized.

DiffMaxChange Maximum change in variables for finite differencing.
DiffMinChange Minimum change in variables for finite differencing.
Display Level of display. 'off' displays no output; 'iter'

displays output at each iteration; 'notify' displays
output only if the function does not converge;'final'
(default) displays just the final output.

FunValCheck Check whether objective function values are valid. 'on'
displays an error when the objective function return a
value that is complex or NaN. 'off' (the default)
displays no error.

GradObj Gradient for the objective function that you define. See
the preceding description of fun to see how to define
the gradient in fun.

MaxFunEvals Maximum number of function evaluations allowed.
MaxIter Maximum number of iterations allowed.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration. See Output
Function.

PlotFcns Plots various measures of progress while the algorithm
executes, select from predefined plots or write your
own. Specifying @optimplotx plots the current point;
@optimplotfunccount plots the function count;
@optimplotfval plots the function value;
@optimplotstepsize plots the step size;
@optimplotfirstorderopt plots the first-order of
optimality.

TolFun Termination tolerance on the function value.
TolX Termination tolerance on x.
TypicalX Typical x values.

Large-Scale Algorithm Only
These options are used only by the large-scale algorithm:

Hessian If 'on', fminunc uses a user-defined Hessian
(defined in fun), or Hessian information (when using
HessMult), for the objective function. If 'off',
fminunc approximates the Hessian using finite
differences.

HessMult Function handle for Hessian multiply function. For
large-scale structured problems, this function
computes the Hessian matrix product H*Y without
actually forming H. The function is of the form

W = hmfun(Hinfo,Y,p1,p2,...)

where Hinfo and possibly the additional parameters
p1,p2,... contain the matrices used to compute H*Y.

The first argument must be the same as the third
argument returned by the objective function fun, for
example by

[f,g,Hinfo] = fun(x)

 Y is a matrix that has the same number of rows as
there are dimensions in the problem. W = H*Y
although H is not formed explicitly. fminunc uses
Hinfo to compute the preconditioner. The optional
parameters p1, p2, ... can be any additional
parameters needed by hmfun. See Avoiding Global
Variables via Anonymous and Nested Functions for
information on how to supply values for the
parameters.

Note 'Hessian' must be set to 'on' for
Hinfo to be passed from fun to hmfun.

See Nonlinear Minimization with a Dense but
Structured Hessian and Equality Constraints for an
example.

HessPattern Sparsity pattern of the Hessian for finite differencing.
If it is not convenient to compute the sparse Hessian
matrix H in fun, the large-scale method in fminunc
can approximate H via sparse finite differences (of the
gradient) provided the sparsity structure of H —i.e.,
locations of the nonzeros—is supplied as the value for
HessPattern. In the worst case, if the structure is
unknown, you can set HessPattern to be a dense
matrix and a full finite-difference approximation is
computed at each iteration (this is the default). This
can be very expensive for large problems, so it is
usually worth the effort to determine the sparsity
structure.

MaxPCGIter Maximum number of PCG (preconditioned conjugate
gradient) iterations (see Algorithms).

PrecondBandWidth Upper bandwidth of preconditioner for PCG. By
default, diagonal preconditioning is used (upper
bandwidth of 0). For some problems, increasing the
bandwidth reduces the number of PCG iterations.
Setting PrecondBandWidth to 'Inf' uses a direct
factorization (Cholesky) rather than the conjugate
gradients (CG). The direct factorization is
computationally more expensive than CG, but
produces a better quality step towards the solution.

TolPCG Termination tolerance on the PCG iteration.

Medium-Scale Algorithm Only
These options are used only by the medium-scale algorithm:

HessUpdate Method for choosing the search direction in the
Quasi-Newton algorithm. The choices are

'bfgs'

'dfp'

'steepdesc'

See Hessian Update for a description of these
methods.

InitialHessMatrix Initial quasi-Newton matrix. This option is only
available if you set InitialHessType to
'user-supplied'. In that case, you can set
InitialHessMatrix to one of the following:

scalar — the initial matrix is the scalar times
the identity
vector — the initial matrix is a diagonal matrix
with the entries of the vector on the diagonal.

InitialHessType Initial quasi-Newton matrix type. The options are

'identity'

'scaled-identity'

'user-supplied'

Examples
Minimize the function .

To use an M-file, create a file myfun.m.

function f = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function

Then call fminunc to find a minimum of myfun near [1,1].

x0 = [1,1];
[x,fval] = fminunc(@myfun,x0)

After a couple of iterations, the solution, x, and the value of the function at x,
fval, are returned.

After a couple of iterations, the solution, x, and the value of the function at x,
fval, are returned.

x =

 1.0e-006 *

 0.2541 -0.2029

fval =

 1.3173e-013

To minimize this function with the gradient provided, modify the M-file
myfun.m so the gradient is the second output argument

function [f,g] = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function
if nargout > 1
 g(1) = 6*x(1)+2*x(2);
 g(2) = 2*x(1)+2*x(2);
end

and indicate that the gradient value is available by creating an optimization
options structure with the GradObj option set to 'on' using optimset.

options = optimset('GradObj','on');
x0 = [1,1];
[x,fval] = fminunc(@myfun,x0,options)

After several iterations the solution, x, and fval, the value of the function at x,
are returned.

x =
 1.0e-015 *
 0.1110 -0.8882
fval =
 6.2862e-031

To minimize the function f(x) = sin(x) + 3 using an anonymous function

f = @(x)sin(x)+3;
x = fminunc(f,4)

which returns a solution

x =

x =
 4.7124

Notes
fminunc is not the preferred choice for solving problems that are sums of
squares, that is, of the form

Instead use the lsqnonlin function, which has been optimized for problems of
this form.

To use the large-scale method, you must provide the gradient in fun (and set
the GradObj option to 'on' using optimset). A warning is given if no gradient
is provided and the LargeScale option is not 'off'.

Algorithms

Large-Scale Optimization
By default fminunc chooses the large-scale algorithm if you supplies the
gradient in fun (and the GradObj option is set to 'on' using optimset). This
algorithm is a subspace trust region method and is based on the
interior-reflective Newton method described in [2] and [3]. Each iteration
involves the approximate solution of a large linear system using the method of
preconditioned conjugate gradients (PCG). See Trust-Region Methods for
Nonlinear Minimization and Preconditioned Conjugate Gradients.

Medium-Scale Optimization
fminunc, with the LargeScale option set to 'off' with optimset, uses the
BFGS Quasi-Newton method with a cubic line search procedure. This
quasi-Newton method uses the BFGS ([1],[5],[8], and [9]) formula for updating
the approximation of the Hessian matrix. You can select the DFP ([4],[6], and
[7]) formula, which approximates the inverse Hessian matrix, by setting the
HessUpdate option to 'dfp' (and the LargeScale option to 'off'). You can
select a steepest descent method by setting HessUpdate to 'steepdesc' (and
LargeScale to 'off'), although this is not recommended.

Limitations
The function to be minimized must be continuous. fminunc might only give
local solutions.

fminunc only minimizes over the real numbers, that is, x must only consist of
real numbers and f(x) must only return real numbers. When x has complex

fminunc only minimizes over the real numbers, that is, x must only consist of
real numbers and f(x) must only return real numbers. When x has complex
variables, they must be split into real and imaginary parts.

Large-Scale Optimization
To use the large-scale algorithm, you must supply the gradient in fun (and
GradObj must be set 'on' in options). See Large-Scale Problem Coverage and
Requirements for more information on what problem formulations are covered
and what information must be provided.

References
[1] Broyden, C.G., "The Convergence of a Class of Double-Rank Minimization
Algorithms," Journal Inst. Math. Applic., Vol. 6, pp. 76-90, 1970.

[2] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp.
418-445, 1996.

[3] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods
for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical
Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[4] Davidon, W.C., "Variable Metric Method for Minimization," A.E.C. Research
and Development Report, ANL-5990, 1959.

[5] Fletcher, R., "A New Approach to Variable Metric Algorithms," Computer
Journal, Vol. 13, pp. 317-322, 1970.

[6] Fletcher, R., "Practical Methods of Optimization," Vol. 1, Unconstrained
Optimization, John Wiley and Sons, 1980.

[7] Fletcher, R. and M.J.D. Powell, "A Rapidly Convergent Descent Method for
Minimization," Computer Journal, Vol. 6, pp. 163-168, 1963.

[8] Goldfarb, D., "A Family of Variable Metric Updates Derived by Variational
Means," Mathematics of Computing, Vol. 24, pp. 23-26, 1970.

[9] Shanno, D.F., "Conditioning of Quasi-Newton Methods for Function
Minimization," Mathematics of Computing, Vol. 24, pp. 647-656, 1970.

See Also
@ (function_handle), fminsearch, optimset, optimtool, anonymous
functions

 fminsearch fseminf

© 1984-2007 The MathWorks, Inc. • Terms of Use • Patents • Trademarks •

© 1984-2007 The MathWorks, Inc. • Terms of Use • Patents • Trademarks •
Acknowledgments

