[pars,criteria,message,output] = fits(a, model, pars, options, constraints, ...) : fit data set on a model @iData/fits find best parameters estimates in order to minimize the fitting criteria using model 'fun', by mean of an optimization method described with the 'options' structure argument. Additional constraints may be set by fxing some parameters, or define more advanced constraints (min, max, steps). The last arguments controls the fitting options with the optimset mechanism, and the constraints to apply during optimization. The fit can be applied sequentially and independently onto iData object arrays. [pars,...] = fits(a, model, pars, options, lb, ub) uses lower and upper bounds as parameter constraints (double arrays) [pars,...] = fits(a, model, pars, options, fixed) indicates which parameters are fixed (non zero elements of array). [pars,...] = fits(a, model, pars, 'optimizer', ...) uses a specific optimizer and its default options=feval(optimizer,'defaults') See below for suggested best optimizers. [pars,...] = fits(a, model, pars, options, constraints, args...) send additional arguments to the fit model(pars, axes, args...) [optimizers,functions] = fits(iData) returns the list of all available optimizers and fit functions. fits(iData) displays the list of all available optimizers and fit functions. You may create new fit models with the 'ifitmakefunc' tool. When the iData object contains a Monitor value, the fit is performed on Signal/Monitor. When parameters, options, and constraints are entered as a string with name=value pairs, the string is interpreted as a structure description, so that options='TolX=1e-4; optimizer=fminpso' is a compact form for options=struct('TolX','1e-4','optimizer','fminpso'). To set a constraint on a model parameter, define the 'constraint' input argument or set the constraint directly on the model parameters with: model.parameter='fix' % to lock its value during a fit process model.parameter='clear' % to unlock value during a fit process model.parameter=[min max] % to bound value model.parameter=[nan nan] % to remove bound constraint model.parameter='' % to remove all constraints on 'parameter' model.Constraint='' % to remove all constraints The default fit options.criteria is 'least_square', but others are available: least_square (|Signal-Model|/Error).^2 non-robust least_absolute |Signal-Model|/Error robust least_median median(|Signal-Model|/Error) robust, scalar least_max max(|Signal-Model|/Error) non-robust, scalar least_rfactor (|Signal-Model|/Error).^2/(Signal/Error).^2 non-robust max_corrcoef 1-corrcoeff(Signal, Model) scalar max_likelihood Type <a href="matlab:doc(iData,'Fit')">doc(iData,'Fit')</a> to access the iFit/Fit Documentation. Type <a href="matlab:doc(iData,'Optimizers')">doc(iData,'Optimizers')</a> to access the Optimizers Documentation. input: a: object or array (iData) when given as an empty iData, the list of optimizers and fit models is shown. model: model function (char/iFunc/function handle) the model is converted into an iFunc object, with 'p' as parameters and 'x,y,...' as axes (1st axis 'x' refers to rows, 'y' to columns) from a string: 'signal = expression(p, x,y,...);' 'expression(p, x,y,...)' from function handle: @(p,x,..)expression or @function(p,x,...) when set to empty, the 'gauss' 1D function is used (and possibly extended to multidimensional). pars: initial model parameters (double array). when set to empty the starting parameters are guessed. when set to 'current', the current model parameter values are used. Named parameters can be given as a structure or string 'Amplitude=...; Width=...' options: structure as defined by optimset/optimget (char/struct) if given as a char, it defines the algorithm to use and its default options (single optimizer name or string describing a structure). when set to empty, it sets the default algorithm options (fmin). options.TolX The termination tolerance for x. Its default value is 1.e-4. options.TolFun The termination tolerance for the function value. The default value is 1.e-4. This parameter is used by fminsearch, but not fminbnd. options.MaxIter Maximum number of iterations allowed. options.MaxFunEvals The maximum number of function evaluations allowed. options.optimizer Optimization method. Default is 'fminsearch' (char/function handle) the syntax for calling the optimizer is e.g. optimizer(criteria,pars,options,constraints) Best optimizers are: fminpso: Particle Swarm Optimization fminpowell: Powell with Coggins line search fminhooke: Hooke-Jeeves direct search fminralg: Shor R-algorithm fminsimpsa: Simplex/simulated annealing fminimfil: Unconstrained Implicit filtering options.criteria Minimization criteria. Default is 'least_square' (char/function handle) the syntax for evaluating the criteria is criteria(Signal, Error, Model) options.OutputFcn Function called at each iteration as outfun(pars, optimValues, state) The 'fminplot' function may be used. options.Display Display additional information during fit: 'iter','off','final'. Default is 'iter'. options.Diagnostics When set to 'on' or 1, returns the correlation coefficient and Hessian matrix constraints: fixed parameter array. Use 1 for fixed parameters, 0 otherwise (double array) OR use empty to not set constraints OR use a structure with some of the following fields: constraints.min: minimum parameter values (double array) constraints.max: maximum parameter values (double array) constraints.step: maximum parameter step/change allowed. constraints.fixed: fixed parameter flag. Use 1 for fixed parameters, 0 otherwise (double array) constraints.eval: expression making use of 'p', 'constraints', and 'options' and returning modified 'p' or function handle p=@constraints.eval(p) OR use a string 'min=...; max=...' to define the structure output: pars: best parameter estimates (double array) criteria: minimal criteria value achieved (double) message: return message/exitcode from the optimizer (char/integer) output: additional information about the optimization (structure) algorithm: Algorithm used (char) funcCount: Number of function evaluations (double) iterations: Number of iterations (double) parsHistory: Parameter set history during optimization (double array) criteriaHistory: Criteria history during optimization (double array) modelValue: Last model evaluation (iData) parsHistoryUncertainty: Uncertainty on the parameters obtained from the optimization trajectory (double) ex: a=iData('sv1850.scn'); p=fits(a,'','','fminpowell'); o=fminpowell('defaults'); o.OutputFcn='fminplot'; [p,c,m,o]=fits(a,'gauss',p,o); b=o.modelValue; figure; plot(a,b) Version: Nov. 27, 2018 See also iData, fminsearch, optimset, optimget, ifitmakefunc, Models, iFunc/fits